在 mongo shell 中,db.collection.mapReduce() 方法是 mapReduce 命令的包装。下面的示例使用 db.collection.mapReduce() 方法:
使用以下文档创建一个简单的 orders 集合:
db.orders.insertMany([ { _id: 1, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-01"), price: 25, items: [ { sku: "oranges", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "A" }, { _id: 2, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-08"), price: 70, items: [ { sku: "oranges", qty: 8, price: 2.5 }, { sku: "chocolates", qty: 5, price: 10 } ], status: "A" }, { _id: 3, cust_id: "Busby Bee", ord_date: new Date("2020-03-08"), price: 50, items: [ { sku: "oranges", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "A" }, { _id: 4, cust_id: "Busby Bee", ord_date: new Date("2020-03-18"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }, { _id: 5, cust_id: "Busby Bee", ord_date: new Date("2020-03-19"), price: 50, items: [ { sku: "chocolates", qty: 5, price: 10 } ], status: "A"}, { _id: 6, cust_id: "Cam Elot", ord_date: new Date("2020-03-19"), price: 35, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" }, { _id: 7, cust_id: "Cam Elot", ord_date: new Date("2020-03-20"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }, { _id: 8, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 75, items: [ { sku: "chocolates", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" }, { _id: 9, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 55, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }, { _id: 10, cust_id: "Don Quis", ord_date: new Date("2020-03-23"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" } ])
对 orders 集合执行 map-reduce 操作,按 cust_id 分组,并计算每个 cust_id 的价格之和:
(1)定义 map 函数以处理每个输入文档:
在函数中,this 表示 map-reduce 操作正在处理的文档。
该函数将每个文档的 price 映射到 cust_id,并发出 cust_id 和 price 对。
var mapFunction1 = function() { emit(this.cust_id, this.price); };
(2)使用 keyCustId 和 valuesPrices 两个参数定义相应的 reduce 函数:
valuesPrices 是一个数组,其元素是由 map 函数发出并按 keyCustId 分组的价格值。
该函数将 valuePrices 数组简化为其元素之和。
var reduceFunction1 = function(keyCustId, valuesPrices) { return Array.sum(valuesPrices); };
(3)使用 mapFunction1 map函数和 reduceFunction1 reduce函数对 orders 集合中的所有文档执行 map-reduce 操作。
db.orders.mapReduce( mapFunction1, reduceFunction1, { out: "map_reduce_example" } )
此操作将结果输出到一个名为 map_reduce_example 的集合。如果 map_reduce_example 集合已经存在,该操作将用此 map-reduce 操作的结果替换 map_reduce_example 集合的内容。
(4)查询 the map_reduce_example 集合验证结果:
db.map_reduce_example.find().sort( { _id: 1 } )
操作返回以下文档:
{ "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Busby Bee", "value" : 125 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "Don Quis", "value" : 155 }
创建 demo1.js 文件,该文件内容如下:
// 定义 Map 函数 var mapFunction1 = function() { emit(this.cust_id, this.price); }; // 定义 Reduce 函数 var reduceFunction1 = function(keyCustId, valuesPrices) { return Array.sum(valuesPrices); }; // 执行 map-reduce 操作 db.orders.mapReduce( mapFunction1, reduceFunction1, { out: "map_reduce_example" } ); // 查询结果集,验证结果 var examples = db.map_reduce_example.find(); while(examples.hasNext()) { printjson( examples.next() ); }
通过如下命令“.mongo.exe .demo1.js”去运行脚本,如下:
D:mongodb-v4.0.2-x86in> .mongo.exe .demo1.js MongoDB shell version v4.0.2-143-g7ea530946f connecting to: mongodb://127.0.0.1:27017 Implicit session: session { "id" : UUID("67347b05-d0d2-4b78-8b90-33d5a92a5a3d") } MongoDB server version: 4.0.2-143-g7ea530946f { "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Busby Bee", "value" : 125 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "Don Quis", "value" : 155 }
使用可用的聚合管道操作符,您可以在不定义自定义函数的情况下重写 map-reduce 操作:
db.orders.aggregate([ { $group: { _id: "$cust_id", value: { $sum: "$price" } } }, { $out: "agg_alternative_1" } ])
(1)$group 阶段按 cust_id 分组并计算字段值。value 字段包含每个 cust_id 的总价。该阶段将以下文档输出到下一阶段:
{ "_id" : "Don Quis", "value" : 155 } { "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "Busby Bee", "value" : 125 }
(2)然后, $out 将输出结果输入到 collection agg_alternative_1 集合。或者,您可以使用 $merge 而不是 $out。
(3)查询 agg_alternative_1 集合去验证结果:
db.agg_alternative_1.find().sort( { _id: 1 } )
该操作返回以下文档:
{ "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Busby Bee", "value" : 125 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "Don Quis", "value" : 155 }
实例:我们可以使用聚合操作符替换 map-reduce 操作,如下:
C:UsersAdministrator> mongo MongoDB shell version v4.0.2-143-g7ea530946f connecting to: mongodb://127.0.0.1:27017 Implicit session: session { "id" : UUID("3a77e665-bfde-489b-bd7f-7d666f38cd43") } MongoDB server version: 4.0.2-143-g7ea530946f > use test switched to db test > db.auth("test","123456"); 1 > db.orders.aggregate([ ... { $group: { _id: "$cust_id", value: { $sum: "$price" } } }, ... { $out: "agg_alternative_1" } ... ]); > db.agg_alternative_1.find(); { "_id" : "Busby Bee", "value" : 125 } { "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Don Quis", "value" : 155 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "B212", "value" : 0 } { "_id" : "A123", "value" : 0 } >