LLMOps(Large Language Model Operations)是一个涵盖了大型语言模型(如 GPT 系列)开发、部署、维护和优化的一整套实践和流程。
LLMOps 的目标是确保高效、可扩展和安全地使用这些强大的 AI 模型来构建和运行实际应用程序。它涉及到模型训练、部署、监控、更新、安全性和合规性等方面。
以下是一些与 LLMOps 理念相关的开源产品:
Dify.AI(https://dify.ai/zh):是一款开源且易用的 LLMops 平台,提供了可视化的 prompt 编排、运营、数据集管理等功能。它可以帮助开发者在几分钟内创建一个 AI 应用,或将 LLM 快速集成到现有应用中,进行持续运营和改进。Dify.AI 于 2023 年 5 月 16 日宣布开源,其代码库目前托管在 GitHub 上。从 3 月 1 日写下第一行代码至今,Dify.AI 共计包含 46,558 行代码,其中大约 30%的代码是由 GPT 生产,目前已实现全部开源,开源协议为 Apache 2.0。
九章云极 DataCanvas 的 llmops 大模型工具链:覆盖了大模型从训练、精调、压缩、部署、推理到监控的全生命周期过程。其中开源的两大工具包括 lms(large model serving)模型运行工具和 lmpm(large model prompt manager)提示词管理器。lms 能够提高大模型的交付速度和质量,降低其运维和运营成本等;lmpm 可以帮助用户设计更好的提示词,引导大模型生成更准确、可靠、符合预期的输出内容,它既可面向技术人员提供 development toolkit 的开发模式,也能面向非技术人员提供人机交互的操作模式。开源地址如下:
lms 模型运行工具:https://github.com/datacanvasio/lms
lmpm 提示词管理器:https://github.com/datacanvasio/lmpm
下表说明了使用 Dify 前后开发 AI 应用的各环节差异:
步骤 | 未使用 LLMOps 平台 | 使用 Dify LLMOps 平台 | 时间差异 |
开发应用前&后端 | 集成和封装 LLM 能力,花费较多时间开发前端应用 | 直接使用 Dify 的后端服务,可基于 WebApp 脚手架开发 | -80% |
Prompt Engineering | 仅能通过调用 API 或 Playground 进行 | 结合用户输入数据所见即所得完成调试 | -25% |
数据准备与嵌入 | 编写代码实现长文本数据处理、嵌入 | 在平台上传文本或绑定数据源即可 | -80% |
应用日志与分析 | 编写代码记录日志,访问数据库查看 | 平台提供实时日志与分析 | -70% |
数据分析与微调 | 技术人员进行数据管理和创建微调队列 | 非技术人员可协同,可视化模型调整 | -60% |
AI 插件开发与集成 | 编写代码创建、集成 AI 插件 | 平台提供可视化工具创建、集成插件能力 | -50% |
在使用 LLMOps 平台如 Dify 之前,基于 LLM 开发应用的过程可能会非常繁琐和耗时。开发者需要自行处理各个阶段的任务,这可能导致效率低下、难以扩展和安全性问题。以下是使用 LLMOps 平台前的开发过程:
数据准备:手动收集和预处理数据,可能涉及到复杂的数据清洗和标注工作,需要编写较多代码。
Prompt Engineering:开发者只能通过调用 API 或 Playground 进行 Prompt 编写和调试,缺乏实时反馈和可视化调试。
嵌入和上下文管理:手动处理长上下文的嵌入和存储,难以优化和扩展,需要不少编程工作,熟悉模型嵌入和向量数据库等技术。
应用监控与维护:手动收集和分析性能数据,可能无法实时发现和处理问题,甚至可能没有日志记录。
模型微调:自行处理微调数据准备和训练过程,可能导致效率低下,需要编写更多代码。
系统和运营:需要技术人员参与或花费成本开发管理后台,增加开发和维护成本,缺乏多人协同和对非技术人员的友好支持。
引入 Dify 这样的 LLMOps 平台后,基于 LLM 开发应用的过程将变得更加高效、可扩展和安全。以下是使用像 Dify 这样的 LLMOps 进行 LLM 应用开发的优势:
数据准备:平台提供数据收集和预处理工具,简化了数据清洗和标注的工作,最小化甚至消除了编码工作。
Prompt Engineering:所见即所得的 Prompt 编辑和调试,可根据用户输入的数据进行实时优化和调整。
嵌入和上下文管理:自动处理长上下文的嵌入、存储和管理,提高效率和扩展性,无需编写大量代码。
应用监控与维护:实时监控性能数据,快速发现和处理问题,确保应用程序的稳定运行,提供完整的日志记录。
微调数据准备:提供人工标注数据集的批量导出,在应用运营过程中收集线上反馈数据持续改善模型效果。
系统和运营:易用的界面,非技术人员也可参与,支持多人协同,降低开发和维护成本。与传统开发方式相比,Dify 提供了更加透明和易于监控的应用管理,让团队成员更好地了解应用的运行情况。
另外,Dify 将提供 AI 插件开发和集成的功能,使得开发者可以轻松地为各种应用创建和部署基于 LLM 的插件,进一步提升了开发效率和应用的价值。
参考资料:https://docs.dify.ai/v/zh-hans/learn-more/extended-reading/what-is-llmops
LLM 侧重于模型本身,而 LLMOps 则更关注如何有效地管理和运营基于 LLM 的应用程序,以使其能够在实际生产环境中可靠、高效地运行,并满足各种业务需求。随着大型语言模型的广泛应用,LLMOps 变得越来越重要,它可以帮助开发团队更好地利用 LLM 的能力,同时应对在实际应用中面临的各种挑战。